

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems

Christian Connert (UIB), Simon Forster (UIB), Michael Hafner (UIB),
Frank Innerhofer-Oberperfler (UIB), Philipp Kalb (UIB), Basel Katt
(UIB), Sarah Löw (UIB), Stéphane Paul (THA)

Document information

Document Number D2.3

Document Title An Integrated Security Process for Lifelong
Adaptable Systems

Version 1.0

Status Final

Work Package WP 2

Deliverable Type Report

Contractual Date of Delivery 31 January 2012

Actual Date of Delivery 31 January 2012

Responsible Unit UIB

Contributors UIB, THA, SIN

Keyword List

Dissemination level PU

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 2 / 56

Document change record

Version Date Status Author (Unit) Description

0.01 06.02.2011 Draft Frank Innerhofer-
Oberperfler (UIB) Outline

0.02 17.02.2011 Draft Christian Connert (UIB) HOMES

0.03 22.02.2011 Draft Christian Connert (UIB) Performance Study

0.04 09.03.2011 Draft Christian Connert (UIB) Extended and updated
Performance Study

0.05 28.03.2011 Draft Christian Connert (UIB) Updated / formatted
references (figure, etc)

0.06 28.03.2011 Draft Christian Connert (UIB) Updated figures

0.07 29.03.2011 Draft Christian Connert (UIB) Updated Performance
Study

0.08 13.04.2011 Draft Michael Hafner (UIB) Revised Chapter 3

0.09 14.04.2011 Draft Simon Forster (UIB) MDS

0.10 19.05.2011 Draft Simon Forster (UIB) Revised MDS

0.11 30.05.2011 Draft Frank Innerhofer-
Oberperfler (UIB) Streamlining

0.12 28.06.2011 Draft Frank Innerhofer-
Oberperfler (UIB)

Restructuring outline
to fit in 50 pages limit

0.13 05.07.2011 Draft Stéphane Paul (THA)
Minor update of the
structure of Section 2
and Section 9.

0.14 11.08.2011 Draft Stéphane Paul (THA) Initial contribution to
Section 2.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 3 / 56

0.15 14.09.2011 Draft Frank Innerhofer-
Oberperfler (UIB)

Restructured
according to conf call

0.16 15.10.2011 Draft Frank Innerhofer-
Oberperfler (UIB) Draft of Sections 2, 3

0.17 23.11.2011 Draft Sarah Löw, Philipp Kalb
(UIB)

Integration of MoVE
chapter

0.18 24.11.2011 Draft Philipp Kalb (UIB) Client side extension
of MoVE

0.19 24.11.2011 Draft Frank Innerhofer-
Oberperfler (UIB)

Chapter 5 Evaluation
and impact

0.20 25.11.2011 Draft Frank Innerhofer-
Oberperfler (UIB)

Added process
description

0.21 12.12.2011 Draft Philipp Kalb, Sarah Löw
(UIB)

Changes in the MoVE
section

0.22 13.12.2011 Draft Basel Katt (UIB) Changes in the
SeAAS-MDS section

0.23 15.12.2011 Draft Frank Innerhofer-
Oberperfler (UIB)

Final changes and
integrations

0.24 19.12.2011 Draft Frank Innerhofer-
Oberperfler (UIB)

First version ready for
scientific review

0.25 10.01.2012 Draft Michela Angeli (UNITN)
First quality check
completed – minor
remarks

0.26 01.01.2012 Draft Bjørnar Solhaug (SIN)
Scientific review
completed – minor
remarks

0.27 02.01.2012 Draft Frank Innerhofer-
Oberperfler (UIB)

Changes to address
scientific review
comments and quality
check remarks

0.28 16.01.2012 Draft Stéphane Paul (THA)
Second scientific
review completed –
minor remarks

0.29 19.01.2012 Draft Michela Angeli (UNITN)
Second quality check
completed – minor
remarks

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 4 / 56

0.30 23.01.2012 Draft Philipp Kalb, Sarah Löw
(UIB)

Addes state of the art
on tools in Section 3

0.31 23.01.2012 Draft Frank Innerhofer-
Oberperfler (UIB)

Final changes to
address second
scientific review and
second quality check

1.0 24.01.2012 Final Frank Innerhofer-
Oberperfler (UIB) Final version

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 5 / 56

Executive summary

The present deliverable reports on the research results of Work Package 2 in Year 3.
In this deliverable the main focus is on the results of the finalization of the prototypical
tool implementation. In addition to the written report Deliverable 2.3 comprises the
documented software concerning the MoVE tool and the model driven security
interface for the security-as-a-service-architecture (SeAAS-MDS).

In this deliverable we describe how the various tools developed in the SecureChange
project map on the Integrated SecureChange Process which was presented in Year 2
in the deliverable D2.2. We then outline a specific process and tooling implementation
on the basis of the HOMES case study using MoVE as the backend. In the HOMES
scenario we connect three different tools with MoVE to outline how it can support
collaboration and a change-driven engineering process.

A main aspect of this deliverable is the description of the MoVE tool. The MoVE tool
stands for Model Versioning and Evolution and is a tailor-made model repository to
support Living Models and change-driven processes. We provide a short summary of
the objectives, the intended features and the architecture which were described in
more detail already in D2.2. In this deliverable we focus particularly on the extendibility
and configuration of the MoVE tool to outline how it can be used to support virtually any
proprietary process and tool.

The other main aspect is the description of the model driven security interface for the
Security-as-as-Service Architecture (SeAAS-MDS). We provide a short summary of
and overview of the framework by outlining the input models and respective output
policies and the transformation process. Then we focus on the prototypical tool itself, in
particular on its graphical user interface which is presented in a step-by-step
walkthrough. Another important aspect of the model driven security interface is its
extendibility which is also addressed in this deliverable.

The deliverable concludes with a summary of the evaluation feedback we collected.
We applied the MoVE tool on both the ATM case study for supporting a fine-grained
change-driven process and the HOMES case study for supporting a coarse-grained
change-driven process. In addition the ATM practitioners evaluated the methodology of
change-driven engineering process. The Security-as-a-Service-Architecture (SeAAS)
was integrated in the HOMES gateway. In addition we conducted performance
experiments to evaluate the performance of the SeAAS approach in comparison to
other approaches.

We collected valuable feedback from the practitioners and partly addressed their
requests during the finalization of the prototypical tool development. In terms of impact
we have published the research results of Work Package 2 in a number of international
software engineering conferences and journals. The MoVE tool has already achieved
positive impact in the research and industrial communities. The MoVE tool will be used
as an infrastructure to integrate different artefacts and to support a change-driven
process to be developed in the FP7 project PoSecCo. In addition three industrial
partners showed strong interested in the MoVE tool and are currently evaluating the
feasibility of integrating it with their tools.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 6 / 56

Index

DOCUMENT INFORMATION ... 1

DOCUMENT CHANGE RECORD .. 2

EXECUTIVE SUMMARY .. 5

INDEX .. 6

1 INTRODUCTION... 8

2 TOOL SUPPORT FOR THE INTEGRATED SECURITY PROCESS FOR
LIFELONG ADAPTABLE SYSTEMS ... 10

2.1 Tool roadmap 10

2.2 The process of defining the Integrated Process 11

2.3 A specific process and tool implementation: The HOMES case study 13
2.3.1 Overview of system and risk models before the change 16
2.3.2 Step 1: Customer orders a new risk analysis 18
2.3.3 Step 2: Update of the risk model 18
2.3.4 Step 3: System analysis of the change 19
2.3.5 Step 4: Change of security configuration and deployment 21
2.3.6 Step 5: Notifying the system analyst of the changed security configuration 22

3 MOVE TOOL .. 23

3.1 Objectives and Features 23

3.2 Architecture 24

3.3 Extendibility and configuration 25
3.3.1 Client-side extension 25
3.3.2 Server-side extension 26

3.4 Comparison of MoVE with other Model Repositories 31

4 MODEL DRIVEN SECURITY INTERFACE ... 33

4.1 Framework Overview 33
4.1.1 Input Models 34
4.1.2 Output Policies 36
4.1.3 Transformation 37

4.2 Prototype 39
4.2.1 Graphical User Interface 40
4.2.2 Extensibility 48

5 EVALUATION AND IMPACT .. 49

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 7 / 56

5.1 Evaluation feedback 49

5.2 Impact 51

6 CONCLUSION .. 52

7 GLOSSARY .. 53

8 BIBLIOGRAPHY... 55

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 8 / 56

1 Introduction

In the first year Work Package 2 focused on the aspects of security engineering
processes and security architectures for evolving systems (cf. D.2.1 [30]). In particular
we presented the Living Security Engineering Process as the first fully change driven
security engineering process. In Year 2 we started tool implementation and extended
our work on change driven security engineering to provide an integrated process
methodology to connect the results of the various Work Packages of the
SecureChange project. This Integrated SecureChange Process was developed as a
light-weight variant of a change-driven security engineering process.

In the third year of the SecureChange project Work Package 2 focused on the
finalization of the prototypical tool development and the validation and evaluation of our
results. In terms of tool development major efforts were invested in completing the
MoVE tool implementation. MoVE, the shortcut of Model Versioning and Evolution, is a
tailor-made model repository to support Living Models and change-driven processes.
The MoVE tool has also been equipped with several adaptors which allow the direct
import and export of models in various formats (XMI, Risk model in spreadsheet
representation, and a model driven configuration interface for SeAAS). In relation to the
Security-as-a-Service-Architecture (SeAAS) a model driven interface to support a high-
level configuration of the security services was implemented (SeAAS-MDS).

In terms of validation and evaluation we worked on two different industrial case studies,
the ATM and the HOMES case study. In terms of tool development major efforts were
invested in completing the MoVE tool implementation. Subject to evaluation and
validation on the ATM case study were on one hand the application of the change-
driven security engineering methodology. On the other hand we have applied the
MoVE tool on the ATM case study and exercised a live demonstration of the tool with
industrial experts from the ATM domain. In terms of the HOMES case study we have
integrated the Security-as-a-Service-Architecture (SeAAS) in the HOMES gateway and
delivered this prototypical implementation to our industrial partner for evaluation.

Overview of this document
In Section 2 we describe the tool support for the Integrated SecureChange Process.
One aspect is the provision of a general overview of how the various tools developed in
the overall SecureChange project can be mapped on the Integrated SecureChange
Process. The other aspect is the description of a specific process and tool
implementation on the basis of the HOMES case study. We outline how three different
tools are orchestrated in an integrated process using the MoVE tool as a backend.

In Section 3 we focus on the results of the MoVE tool implementation. The
requirements and the overall architecture have already been documented in Year 2 (cf.
D.2.2 [31]). In this deliverable we shortly summarize the main objective and core
features of the MoVE tool. Particular emphasis is put on how the MoVE tool can be
extended and configured to support any industrial process and proprietary tool. The
description of a concrete extension and configuration is aligned to the demonstration of
the HOMES case study.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 9 / 56

In Section 4 we describe the model-driven configuration interface for the Security-as-a-
Service-Architecture (SeAAS). This section contains in the first part a description of the
overall framework, including the input and output models and the transformations
needed to adapt the configuration. The second part is dedicated to the graphical user
interface and to the extensibility of the tool.

Section 5 describes the feedback collected during the validation and evaluation
exercises with our industrial partners and outlines how the feedback impacted the
research and the prototypical tools of Work Package 2. This section contains also a
short summary of the impact of the research results developed in Work Package 2.
The Deliverable ends with a Conclusion in Section 6, a short Glossary in Section 7 and
the Bibliography in Section 8.

In addition to this printed report Deliverable 2.3 also comprises the documented
software of the MoVE tool and the model driven interface for the configuration of
security services (SeAAS-MDS).

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 10 / 56

2 Tool Support for the Integrated Security
Process for Lifelong Adaptable Systems

In this Section we sketch the tool support for the Integrated Security Process for
Lifelong Adaptable Systems. The Integrated SecureChange Process was developed in
Year 2 as a light-weight change driven security engineering process. That way the
Integrated SecureChange Process allows the integration of different methodological
approaches developed within the overall project. In this Section we will present how all
the tools developed within the project map to the Integrated SecureChange Process.

2.1 Tool roadmap
This section describes how the various tools developed in the SecureChange project
contribute to the Integrated Security Process. Figure 1 outlines the different tools with
regard to the models that serve as input or output and the main activities that are
executed. Most of the tools support a specific methodology developed within the
project. Several of these tools are built on the basis of the Eclipse platform. This means
most of the tools have a common technological platform which provides a basis for
integration.

Two tools are generic in the sense that they are methodology-agnostic. One of these
tools is EMF-IncQuery which is a very efficient query language and implementation.
The other tool is the MoVE tool developed within Work Package 2. The MoVE tool
supports the instantiation of the Integrated SecureChange Process. It is generic in the
sense that it allows modeling any type of process and is open to connect any type of
tool via specific adaptors. In Chapter 3 we describe in detail how the MoVE tool can be
configured to support arbitrary processes and tools.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 11 / 56

Figure 1 SecureChange tools mapped on the Integrated Process

2.2 The process of defining the Integrated Process
In many organizations there are existing industrial proprietary processes and tools
which are in use. The Integrated Process can be adapted to virtually any proprietary
processes and tools in place. In the following the main issues which have to be
addressed in the process of redefining or adapting the Integrated Process are shortly
described. The description supposes that the Integrated Process is supported by the
MoVE tool which will be described in more detail in Section 3.

The first step is the analysis of any existing process descriptions, either by studying
process documentations, by walkthroughs or through workshops with the relevant
stakeholders. The main goal is to achieve an understanding of the dynamics of the

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 12 / 56

current processes. The challenge in this task is the transition from an activity oriented
view to a change-driven view.

A decision on the level of granularity has to be made. Should the integration be based
on the states of entire models or on the states of single model elements? An example
for a granularity based on entire models is the Integrated SecureChange Process. An
example for a fine-grained integration based on the state of model elements is the
change-driven security engineering process which was applied in D2.2 on the ATM
case study (cf. [31]).

During the transition of an activity oriented view to a change-driven view it is crucial to
gain an understanding of which activities are performed on which models or model
elements. Related to this aspect are also the state changes that reflect the lifecycle of
these model elements.

Core aspects of a change-driven engineering process are the change events which
trigger activities. To correctly define these change events we need to have a clear
picture on the links between the models and the model elements. Based on these links
we then need to ask when and how change events can be processed. What underlying
rules have to be fulfilled before certain actions can be fired?

The answers to the above outlined questions result in an initial design of a draft for the
state machines. These state machines have not yet transitions and rules defined; they
just highlight the major lifecycle phases of the artifacts which are processed.

Several feedback loops have to be run together with process owners or stakeholders to
improve and correct the initial design of state machines. Once the state machines have
reached the expected quality and correctly outline the artifact states at the right level of
granularity then the informal design of transition rules begins.

These transition rules define when an artifact changes from one state to another and
when changes in other state machines are triggered. The initial description of these
rules is informal and textual to have a basis for the discussion with the stakeholders.
Once the informal description of the transition rules is confirmed correct, the rules are
formalized using the Object Constraint Language (OCL).

Using specialized tools (e.g. SQUAM1) the correctness of these OCL rules can be
checked. Again several feedback loops might be required before the desired quality
and correctness of formal OCL rules for the transitions is reached. At the end of the
process also the state machines are formalized using SCXML. Both the formalized
state charts defined in SCXML and the formal transition rules defined as OCL can be
interpreted by the MoVE tool to support the synchronization of different tools and
processes.

In the SecureChange project we have applied the process of defining an Integrated
Process for a set of tools of our industrial partner Thales. Thales provided us with an
initial process description of a system modeling tool (SMS) and the risk modeling tool
Rinforzando. We have also been given consistency rules which define relations
between the system and the risk model. The resulting state machines which reflect the

1 http://www.squam.info/

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 13 / 56

lifecycle of the artifacts processed by the system analysis and risk analysis processes
of Thales are documented in the deliverable D4.4b.

2.3 A specific process and tool implementation: The
HOMES case study

In this Section we outline how the MoVE tool can be used to implement and support
the Integrated Process by orchestrating and connecting different tools. The basis for
this demonstration is the change scenario which was identified in the HOMES case
study and described in deliverable D2.2, Section 7.1 (cf. D.2.2 [31]). In this deliverable
a concrete tool based instantiation of the Integrated SecureChange Process will be
described. For a detailed introduction to the HOMES case the reader is referred to
deliverable D2.2, Section 7.1 (cf. [31]).

Figure 2 Integrated Process change story for the HOMES case

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 14 / 56

The change scenario of the HOMES case study is based on an initial change event
that is driven by the customer, in this specific case the HOMES gateway operator.
Numerous complaints by the consumers and by third-party service providers pose a
threat to the business model of the operator. Therefore a risk analysis is ordered to
understand weaknesses and vulnerabilities in the current system.

Figure 2 outlines the sample change story as an instance of an Integrated Process.
Please note, that the change story was simplified and does not include the Test Model
that was part of the initial version of the change story outlined in D.2.2 (cf. [31], Figure
91). The security configuration lane has been added to outline how the model-driven
configuration interface of the Security-as-a-Service-Architecture (SeAAS-MDS) can be
integrated in the overall change handling process.

After the ordering of a new risk analysis the risk management team updates the risk
model (step 2) to analyze and understand the scenarios leading to the consumer and
third-party complaints. As a treatment to manage the identified risks and underlying
vulnerabilities the deployment of a non-repudiation protocol is proposed. After the
conclusion of this task the risk model is committed to the MoVE tool which in the
background updates the states according to the defined state machines. In addition the
MoVE tool triggers the next action, which is the system analysis.

In step 3 the system designer analyzes the current model of the HOMES gateway
system and changes the system model to reflect the implementation of the new
treatment “deployment of non-repudiation protocol”. After the update of the system
model he then orders the implementation of the non-repudiation protocol to the security
configuration team. Again, the system modeler commits the new version of the system
model to the MoVE tool which updates the state of the model and triggers the next
action, which in this step is the security configuration.

The security configuration is handled with the model-driven security configuration
interface for the Security-as-a-Service-Architecture (SeAAS-MDS) which supports the
definition of policies and protocols (step 4). The defined protocol is then transformed to
configuration files which are deployed in the Security-as-a-Service Engine (SeAAS)
integrated in the HOMES gateway. After the successful definition of new security
policies the security configuration is committed to the MoVE tool which updates the
state. In addition the MoVE tool after the successful implementation of the additional
security service bundle and the respective security policy sends a notification to the
system modeler (step 5).

Figure 3 outlines the different tools that are connected in this scenario using MoVE in
the backend. We use a UML system modeling tool (i.e. MagicDraw), a spreadsheet
representation of CORAS risk models, and a model-driven configuration interface for
the Security-as-as-Service-Architecture (SeAAS-MDS). We choose MagicDraw as an
UML diagramming tool because we use it heavily in our research group. The decision
for using a spreadsheet representation of the CORAS risk models was based on the
estimation of the effort required to realize and implement an adaptor integrated directly
in CORAS. In principle we could have used also alternative tools and models.

In the following the overall change story connecting these three tools and the
respective user or stakeholders are outlined. The Integrated SecureChange Process
as a light-weight variant of a change-driven security engineering process supports only
a coarse-grained coupling of the different models that are processed with the three

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 15 / 56

tools. A fine-grained coupling based on the states of single model elements was
realized and demonstrated for the second ATM validation workshop.

Figure 3 Overview of the tools used in the HOMES case

Figure 4 reflects the overall architecture and outlines which tools have been connected
with the MoVE tool in the handling of the HOMES case study.

Figure 4 Tools integrated in change handling of the HOMES case

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 16 / 56

2.3.1 Overview of system and risk models before the
change

The system model before change is depicted in Figure 5. At this point we have a
running HOMES gateway connecting the operator’s services, third-party service
providers and the consumers using the HOMES gateway. The HOMES gateway is
already equipped with a Security-as-a-Service Engine.

Figure 5 UML system diagram before change

The initial version of the CORAS risk models before any change handling is depicted in
Figure 6. While in principle it is possible to write a specific adaptor for the CORAS tool
to directly process CORAS models with the MoVE tool, we have used a spreadsheet
representation of the same models. That way we can use a generic CSV file for
representing and processing the models.

Table 1 contains the same risk models as outlined in Figure 6 CORAS risk diagram
before change, but represented as a spreadsheet. To handle the overall change
process, we have developed an adaptor for the MoVE tool which is able to handle the
risk model in the format of a spreadsheet.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 17 / 56

Figure 6 CORAS risk diagram before change

Table 1 Spreadsheet representation of CORAS risk model before change

Asset ID

Unwanted
incident/threat
scenario

Leads
to Vulnerability Threat agent Treatment

Integrity of
security
components
functionalities UI1

Security Services
not functioning

TH1
PDP not
responding UI1

Insufficent
testing

PDP service component
failure

TH2
Loss of connection
to PDP service TH1

Dependency on
connection Network failure

UI2

Deployment of new
security service
impairs existing
security services

TH3

New security
service breaks
dependencies by
overwriting or
updating existing
serivces UI2

Requirements
not clearly
specified Operator

UI3

Newly deployed
security service not
functioning

TH4

Required
dependencies for
new security
service not met UI3

Requirements
not clearly
specified Operator

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 18 / 56

2.3.2 Step 1: Customer orders a new risk analysis
The customer, which in this case is the operator of the HOMES gateway, orders a new
risk analysis after increasing complaints from consumers and third-party service
providers. The risk analysis team checks out the latest risk model from the MoVE
repository. The MoVE tool changes the state of the risk model from “complete” to
“defined” (cf. Figure 7). As soon as the risk analysis team starts updating the risk
model, the state changes again to “checking risks”.

Figure 7 The state machine reflecting the life cycle of the risk model

2.3.3 Step 2: Update of the risk model
The result of the updated risk analysis is an extension of the existing risk model with
new scenarios that threaten the service store sales policy compliance (cf. Figure 8). In
Figure 8 the treatment for addressing three threat scenarios is also depicted, namely
the deployment of a non-repudiation service in the HOMES gateway. Table 2
represents the risk model outlined in Figure 8 in a spreadsheet.

Figure 8 CORAS risk diagram addition after change

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 19 / 56

After the update of the risk model and assuming the resulting risks are below the
threshold, the risk analysis team commits the updated risk model to the MoVE tool.
MoVE then switches its state to “complete” (cf. Figure 7).

Table 2 Spreadsheet representation of CORAS risk model after change

2.3.4 Step 3: System analysis of the change
After the commit of the updated risk model in step 2 the MoVE tool triggers the next
action which is the system analysis. The system analyst can use his UML system
modeling tool to analyze the current architecture of the HOMES gateway before
ordering the implementation of the non-repudiation protocol. The first step he does is to
update his current system model from the MoVE repository. The state of this updated
system model was switched to “defined” by MoVE during the change propagation.

Asset ID
Unwanted
incident/threat scenario

Leads
to Vulnerability Threat agent Treatment Cures

Service Store
Sales Policy
compliance UI4

TPSP delivers service
without customer consent
in violation of Sales Policy

Service Store
Sales Policy
compliance TH5

TPSP deploys service(s)
in addition to a legitimately
purchased service

UI4,
TH6 Malicious TPSP

Service Store
Sales Policy
compliance TH6

TPSP denies having
deployed additional
services

UI4,
TH6

Deployment of
non-repudiation TH6

Service Store
Sales Policy
compliance UI5

TPSP requests payment
from customer for
delivering service in
violation of Sales Policy

Service Store
Sales Policy
compliance TH7

TPSP improperly reports
purchase of service that
was never deployed

UI4,
UI5 Malicious TPSP

Deployment of
non-repudiation TH7

Service Store
Sales Policy
compliance UI6

Customer violation of
Sales Policy

Service Store
Sales Policy
compliance TH8

Customer denies having
purchased service after
successful deployment UI6 Dishonest customer

Deployment of
non-repudiation TH8

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 20 / 56

Figure 9 The state machine reflecting the life cycle of the system model

Figure 5 showed the architecture of the HOMES gateway before the implementation of
the proposed treatment “deployment of non-repudiation protocol”. The HOMES
gateway is equipped with a Security-as-a-Service-Engine (SeAAS) and has a few
security services already deployed. At this point the system analyst updates the system
model to reflect the changes introduced due to the planned deployment of a non-
repudiation protocol (cf. Figure 10). One can see that there are additional security
services to be deployed on the HOMES gateway and at the operator site.

Figure 10 UML system model after change

After the system analyst concludes his analysis and confirms the changes, he will
commit the new version of the system model again to MoVE. MoVE changes the state

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 21 / 56

of the system model to “implementing” and triggers an activity on the side of the
security configuration team (cf. Figure 9).

2.3.5 Step 4: Change of security configuration and
deployment

After the commit of the new system model by the system analyst the MoVE tool hands
over control to the security configuration team. The state of the security configuration
model is changed to “defined” by MoVE. The security configuration team is actually
responsible for the implementation and realization of the non-repudiation protocol. The
first step carried out is to update their current local security configuration with the new
version from the MoVE repository.

Figure 11 Change to the configuration of security services

The security configuration is changed using the model driven security configuration
interface of the SeAAS (cf. Figure 11). In the case that the required security service is
not available yet, the security configuration team can extend the SeAAS with a new
security protocol. The extensibility of SeAAS is described in more detail in Section
4.2.2. After the security configuration team concludes the reconfiguration task with the
SeAAS-MDS, it commits the new security configuration to the MoVE tool. MoVE then
changes the state of the security configuration to “complete” and triggers the next
activity.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 22 / 56

2.3.6 Step 5: Notifying the system analyst of the
changed security configuration

At step 5 the system analyst receives a notification by the MoVE tool of the completed
changes of the security configuration. He updates his current risk model with an
updated version from the MoVE repository. The system model has changed its state to
“completed” since the new security services are now configured and deployed. In
principle now the MoVE tool could trigger additional actions. For example the testing
team could be notified to start a test run on the updated configuration. Another
example for an additional change handled by MoVE could be an update to the risk
model to reflect the risk reduction realized by the implemented treatment. To keep the
application of MoVE on the HOMES case study simple at this point the overall change
handling process is concluded.

This handling of the overall HOMES change story reflects a coarse-grained change
driven engineering process. Such a coarse-grained process allows orchestrating
proprietary tools and processes as changes are reflected on the basis of entire models.
On the ATM case study a fine-grained change driven engineering process was applied,
which is based on the states and changes of single model elements. Both approaches
are supported by the MoVE tool. The evaluation feedback of the MoVE tool is outlined
in Section 5.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 23 / 56

3 MoVE Tool

In this section we describe the MoVE Tool. MoVE, the shortcut of Model Versioning
and Evolution, is a tailor-made model repository to support Living Models and change-
driven process. In the following subsections we describe MoVE’s objectives and
features in Section 3.1, the architecture of MoVE in Section 3.2 and its extendibility and
configuration in Section 3.3.

3.1 Objectives and Features
The main objective of MoVE is to support a model based, change driven process to
bring the concept of Living Models into being. In order to fulfill this objective MoVE
implements several key features. In the following the most important ones are listed
and shortly explained. For more details about the concepts behind, please see D2.2
(cf. [31]).

Model Versioning. To be able to support efficiently model based development, we
need a sophisticated model versioning. Our repository, based on SVN, enables the
user to store models and recap arbitrary versions of models, just as it is possible for
other files in SVN. It is also possible to concurrently edit one version of a model. By
committing any version to the repository, an implemented model merging mechanism
gets active and merges the models, if needed. If there are some conflicts that cannot
be handled automatically, the modeler gets informed by MoVE.

Stakeholder Views and Collaboration, as well as Tool Support. In a project of a
certain size several stakeholders with different roles are involved. There might be
security engineers as well as system designers and software architects. It is obvious
that they do not use the same tools and do not have the same view on the system, as
they are interested in different aspects. MoVE supports the usage of different tools and
provides also different views for stakeholders. Since all artifacts are stored in the very
same repository, collaboration is easily possible. This collaboration is also enhanced
by the next two implemented features.

Change Driven Engineering. Change driven engineering combines three aspects:
states, change propagation and support of state machines. Every element stored in the
repository has a state-attribute. And every class of elements has an own state
machine. If a state of an element changes, the according state machine gets active
and looks if some transitions can fire. As long as there are state changes possible, they
are performed in a loop. The termination conditions of the loop are to reach stable
states of all elements. Through the enactment of one state machine, several state
machines of other elements can be triggered. This is called change propagation, as the
change is propagated from one model element to others.

Partial Model Support. The overall system model is the union of several partial
models, e.g. data base model, security model, etc. We need the concept of partial
models to be able to efficiently support various stakeholders. By introducing partial
models, MoVE has to cope with a heterogeneous environment. Each partial model has
a master tool, which is the tool that was used for its creation. For example, in our

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 24 / 56

context a UML model is created with the tool Magic Draw, while a security model is
defined with the help of Microsoft Excel. For each used tool, MoVE has to provide an
adapter to be able to work with various formats. The intersection of all partial models
may not be empty. The conflict resolution on overlapping task is done by MoVE.

3.2 Architecture
The architecture of MoVE was described in Deliverable 2.2 (cf. [31]). We therefore
summarize here the most important concepts of MoVE’s architecture.

MoVE is a component based model repository consisting of a basic component for
storing EMF models leveraging on SVN to provide features of standard version control
systems. To provide an interface for easy integration of MoVE into modeling software
such as MagicDraw (cf. [15]), a client-side component called MoVEClient hides all
protocol calls between client and server. The MoVEClient also offers a rich API, useful
for integration into modeling tools, having features such as model merging or update
notification.

The main component of MoVE on the server-side is called MoVEServer. From the
technological point of view the MoVEServer component is an Eclipse RCP application
that provides extension points for plugins following the Eclipse plugin design principles.
The underlying SVN server informs the MoVEServer on every change triggered by the
MoVEClient. Starting with this notification the MoVEServer analyses each change of a
model and propagates this information to plugins that are associated to the respective
model and the type of change that was made.

In Figure 12 you can see the client-server architecture of MoVE. On the server-side
several plugins use the PluginInterface interface to add new functionalities to MoVE.
One example is the state machine plugin (StatemachinePlugin) that allows MoVE to
execute and store state machines for certain elements. Deliverable 2.2 (cf. [31])
provides a closer look on this plugin. In the next section we show possibilities to
extend MoVE.

Figure 12 The architecture of MoVE

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 25 / 56

3.3 Extendibility and configuration
MoVE is designed as a very flexible and extensible framework which is highly
configurable. As described in Section 3.2, MoVE has client- and server-side
components; both sides can be extended using the provided APIs and interfaces.

To show the feasibility and efforts to create MoVE extensions the following Sections
will demonstrate how to write three different extensions of MoVE.

• Section 3.3.1 explains how to write a client side adapter that integrates MoVE
into the CORAS tool using the MoVEClient API.

• Section3.3.2 shows two examples of server-side extensions. The first extension
adds a new state machine to a project. The second extension adds a small
metric plugin that uses OCL to count the number of Information instances
attached to a model element referencing the models presented in Deliverable
2.2 (cf. [31]).

The section is finished with an explanation of MoVE’s Administrator Interface that
allows adding new plugins and configuring them for a certain type of model and
change-event.

3.3.1 Client-side extension
To integrate modeling tools into MoVE a developer must implement a MoVE adapter.
Adapters are usually plugins integrated into modeling tools using the API provided by
the tools. The functionality to communicate with MoVE is provided by the MoVEClient
component. For example the Magic Draw adapter uses the Magic Draw Open API to
create Menus and Windows in the Magic Draw Environment but it uses the MoVEClient
to commit models to the MoVE repository. The effort of creating an adapter strongly
depends on the API provided by the tools. The main challenge of an adapter is to
convert the data into an XMI file using the (EMF) UML metamodel.

Modeling tools in the Eclipse environment, such as Papyrus, are usually based on EMF
and therefore use models which do not need any conversion. MoVE provides an
adapter for Eclipse which can be integrated into any Eclipse application.

Figure 13 shows a mock-up screenshot on how the integration of MoVE into the
CORAS tool could look like. This screenshot is used to show the conceptual integration
of MoVE and CORAS. The MoVE Eclipse adapter already comes with a graphical user
interface such as the menu depicted in the mock-up screenshot. A developer of a new
adapter for modeling software can use this adapter as an abstract component to build
the concrete adapter upon it. The developer needs to decide what data the adapter
should sent to MoVE and how the results of MoVE influence the current model. For
example a developer needs to implement a method that changes the color of a state
variable in case MoVE altered the state. This is adapter specific code which must be
implemented for each tool.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 26 / 56

Figure 13 A screenshot of the MoVE plugin integrated in the CORAS tool

3.3.2 Server-side extension

3.3.2.1 Add new state machine
Adding a new state machine enhances the change driven behavior of MoVE. If we
want to create a new state machine we need an Eclipse instance containing the MoVE
Admin View, available as an Eclipse plugin. A screen shot of this Eclipse perspective is
depicted in Figure 14.

On the left side of this figure one can see the project explorer with the imported
modeling projects, also containing a folder named “Statemachines”. Within this folder
all existing state machines are defined. We will now add a new state machine by
creating another SCXML file in this folder. We have to take care that the state machine
file is named according to the related model element in the meta model. E.g. adding a
state machine for the model element “Information”, we have to name the according
SCXML “information.scxml”.

As soon as the file is created, we can define the desired behavior of the state machine
by using SCXML and OCL. After editing the file, we commit the changes to the MoVE
repository. At this point, the newly defined state machine is considered during MoVE
change handling. For an example of a SCXML statemachine we refer to the
Deliverable D2.2, Section 4.3.2.2, Listing 1 [31].

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 27 / 56

Figure 14 Adding a new state machine (X1)

3.3.2.2 Add a plugin to check a metric
In this section we show how to add a plugin that calculates a metric for a changed
model. The result of the metric is then returned in a message delivered to the user
automatically via client-side adapters. In this example the model was changed in
MagicDraw and, using the MoVEadapter for MagicDraw, committed to MoVE. The
resulting message is shown in MagicDraw after the commit was done.

The basic idea of MoVEplugins was already described in Deliverable 2.2 (cf. [31])
therefore we will only shortly summarize the concepts. Every time a model is
committed to the MoVE repository, the MoVE server analyses the changes of the
model between the committed version and the previous version. For each change
MoVE generates a change event that contains information about the type of model
element that was changed and the type of change itself. The events are sent to the
plugin registry which is a component that allows MoVEplugins to register for a certain
type of change event. An example for a change event is
MoVEConstants.EVENT_TYPES.PRE_COMMIT which is triggered every time a model
was changed irrespective of the type of the change. The plugin registry can be
configured with a graphical user interface which is described in the end of this section.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 28 / 56

Listing 1 ATMMetric as an example for a MoVE plugin

1. package at.qe.move.ATMMetric;
2. import …;
3. import at.qe.move.svnbackendrcp.plugin.MoVEPluginInterface;
4. public class MetricPlugin extends MoVEPluginInterface {
5. public static String VERSION_ID = "1.0.0";
6. private OCLHelper<Classifier, ?, ?, Constraint> oclHelper;
7. private OCL<?, Classifier, ?, ?, ?, ?, ?, ?, ?, Constraint, Class, ?> ocl; // generics
8. //Returns all information objects starting from a Global Business Process
9. private String treeIterator_GProcess_Info = "package Data context

model::GBusinessProcess def treeIterator_GProcess_Info : treeIterator_GProcess_Info() :
Set(model::Information) = Set{}->union(self.local->iterate(obj :
model::LBusinessProcess; result : Set(model::Information) = Set{} | result-
>union(obj.process))) endpackage" ;

10. @Override
11. public void handleNotification(String notification, Object payload) {
12. ModelVersion version = (ModelVersion) payload;
13. if (version.getAdapter() != null)
14. {
15. EObject model = version.getAdapter().getModel();
16. model.eResource().getResourceSet().getPackageRegistry().put(UMLPackage.eNS_URI,

UMLPackage.eINSTANCE) ;
17. ocl = OCL.newInstance(new

UMLEnvironmentFactory(model.eResource().getResourceSet().getPackageRegistry(), model
.eResource().getResourceSet()));

18. oclHelper = ocl.createOCLHelper();
19. try {
20. ocl.parse(new OCLInput(treeIterator_GProcess_Info)) ;
21. } catch (ParserException e1) {
22. Activator.LogError("problem parsing query ");
23. return;
24. }
25. //check all GBusinessProcess objects
26. TreeIterator<EObject> iterator = model.eAllContents();
27. while (iterator.hasNext())
28. {
29. EObject item = iterator.next();
30. if (item.eClass().getName().equals("GBusinessProcess))"))
31. {
32. EObject oclContext = getContextForObject("GBusinessProcess");
33. oclHelper.setInstanceContext(oclContext);
34. Object result = null;
35. try {
36. OCLExpression<Classifier> query = null;
37. query = oclHelper.createQuery("result: Integer = treeIterator_GProcess_Info()->size");
38. result = ocl.evaluate(item, query);
39. //return result as information
40. Activator.LogInfo("number of information objects for " + ((NamedElement)item).getName()

+
 " is: " + result);

41. } catch (ParserException e) {
42. Activator.LogError("problem parsing query ");
43. }}}
44. }
45. }
46. @Override
47. public String getName() {
48. return "ATM Metric Plugin";
49. }
50. @Override
51. public String getPluginVersion() {
52. return VERSION_ID;
53. }
54. @Override
55. public String getEvent() {
56. return MoVEConstants.EVENT_TYPES.PRE_COMMIT;
57. }}

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 29 / 56

For the demonstration of this mechanism Listing 1 shows the java code which is
necessary to complete the task of writing a small metric plugin (except some missing
imports from the standard java libraries). The MetricPlugin class extends the
MoVEPluginInterface class and implements its abstract methods. The most important
function is handleNotification(String notification, Object payload). The first argument
provides the type of change event which caused MoVE to execute the plugin. The
second argument payload delivers an object which contains information (depending on
the event). For plugins listening to the pre-commit-event this payload is a ModelVersion
object that stores the current model, a link to its last version, its metamodel and a link
to the last version of the metamodel. In the plugin a loop looks for objects of the type
GBusinessProcess (lines number 26 to 42) and executes an OCL statement on each of
these objects (lines number 37 and 38). The result of the OCL query is a number that
counts information objects associated with the GBusinessProcess object. Using the
LogInfo function (line number 40) the result is then sent back to MoVE as an
information message.

Figure 15 shows a screenshot from the MagicDraw modeling tool that displays the
result of the metric plugin to the user. The Information object ADS-B was added to the
model (cf. [31]) and committed to MoVE. After the commit the result is a message
dialog where the first column gives information about the type of message in this case
the message is of type Info, which is an abbreviation for a message that only delivers
general information. The second column shows the message itself.

Figure 15 Screenshot showing the result of the ATMMetric Plugin

3.3.2.3 Configuration
MoVE enables the users to easily change the configuration of models, meta models
and plugins of a project. To change this configuration, the MoVE Admin Interface
provides a GUI (cf. Figure 16).

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 30 / 56

Figure 16 Screenshot of the MoVE Administration Interface

The Admin Interface includes three fields:

Models: this area is built by a file explorer, listing the content of the selected
repository. One repository can contain several projects. For each project, all existing
partial models are listed.

Plugins: this area lists all existing MoVE plugins for this repository.

Configuration: for each model in the repository the user can choose (configure)
plugins which should be applied. In this third area of the MoVE Admin Interface the
actual configuration can be viewed. To add a plugin to a model, such as the
StateMachine plugin, just pull it from the middle area via drag and drop onto a model of
the left area. Immediately the configuration changes. To remove a plugin from a model,
select the according line in the configuration and delete it by using the context menu.

Figure 17 Change configuration of MoVE metamodel

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 31 / 56

Figure 17 shows how the user can define models to be a MoVE model or choose which
model is their metamodel. Declaring a model to be a MoVE model means that MoVE
incorporates this model into its process. In most cases, models are marked as MoVE
models by the adapter of their master tool (see Section3.1, Partial Model Support). In
cases models are manually imported to MoVE projects, without the use of MoVE
adapters, the models have to be declared manually as MoVE models in the following
way: select a model in the project explorer (shown in Figure 17) and chose “MoVE” in
the context menu. Another context menu pops up and allows the user to define the
model to be a MoVE model. In the same menu the model can also be revoked to be a
MoVE model.

The option “declare MoVE metamodel” opens a file selection window that allows
selecting a model which should be used as the metamodel of the current model.

3.4 Comparison of MoVE with other Model
Repositories

In this section we will analyze the current state of art of model repositories with similar
requirements and compare them to MoVE. First of all we will start with systems that
cover the versioning aspect of MoVE, followed by an analysis of current systems which
support workflows.

Model versioning is the focus of several research and industry projects. One of the
most popular model versioning systems is CDO2 which has been developed as part of
the Eclipse modeling framework. CDO supports model element versioning, multi user
access, transactional access, scalability, thread safety and collaboration and is fully
integrated into the Eclipse modeling framework (EMF). The main disadvantage of
CDO is its limitation to ECore-EMF models which basically covers class diagrams
solely. There is no support of instance specifications, state machines or component
diagrams and no support for a change-driven process at all. Most of the current
versioning systems have similar disadvantages or do not have any relation to models
(for example CVS) which is crucial for model versioning systems3.

Process-aware systems can be categorized into commercial and non-commercial tools.
The most comparable non-commercial system is Unicase4, developed by Technische
Universität München. Unicase is a CASE-tool that supports modeling artifacts of a
software engineering project, such as components and tasks. Its focus is on the
software development process and linkage of its artifacts. Its main drawback is the
fixed meta model and the limited possibility to integrate client-side tools. Integration
with other (modeling) tools such as MagicDraw or the SecureChange tools is hardly
possible. Unicase does not support change handling and therefore does not support a
change-driven process.

2 http://wiki.eclipse.org/CDO
3 http://www.eternals.eu/
4 https://teambruegge.informatik.tu-muenchen.de

http://wiki.eclipse.org/CDO
http://www.eternals.eu/
https://teambruegge.informatik.tu-muenchen.de/

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 32 / 56

IBM (Telelogic) announces Rational Doors5 as commercial requirements management
tool. Doors manages requirements in a central repository. State-based transition
systems can model changes and their consequences to related requirements. The
difference to our approach is that within Doors one cannot automate state changes or
propagate changes automatically throughout the data. The user just gets notified which
elements are affected by a specific change. Another system proposed by IBM is the
Jazz-platform6. The Jazz platform is not a product but a platform for team-based
software development based on Rational products such as IBM Rational Team
Concert, Rational Quality Manager and Rational Requirements Composer. Its current
strength is the linkage between artifacts using the Linked Lifecycle Data standard. Jazz
does not provide any support for a change-driven process. Since the possible
integration of non-Rational tools is not documented we categorize this system as a
commercial system too.

A further related commercial tool is in-Step by microTOOL7. In-Step is a tool for
process driven project management in the area of system and software development.
All activities defined within the project have a status attribute. Similar to the
functionality in Doors, one can trace changes of elements and also ascertain possible
impacts on other elements. in-Step allows the definition of state -machines to guide the
changes of each element. Change propagation and evolving the underlying meta
model is not possible.

In summary the strengths of MoVE ,compared to other tools available at the moment,
are the support of a generic method for model versioning, the support of tool-
independent meta-models and the generic change handling mechanism.

5 http://www-01.ibm.com/software/awdtools/doors/
6 http://www-01.ibm.com/software/rational/jazz/
7 http://www.microtool.de/instep/

http://www-01.ibm.com/software/rational/jazz/

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 33 / 56

4 Model Driven Security Interface

This section introduces an interface for the SeAAS framework which is based on the
principles of Model Driven Security [29]. The goal is to provide the ability of configuring
the SeAAS framework on a functional level. Therefore we implemented a prototype
that is capable of generating technical policies out of functional models. So it is
possible to make changes to security services on a functional level. In a last section we
will present the necessary tasks to adapt our framework for Model Driven Security
(MDS) to the other domains.

4.1 Framework Overview
As a basis we use workflow models describing the interaction of actors at business
level. These workflow models are enhanced by security requirements. In order to be
able to generate policies for the technical SeAAS platform, the initial security
requirement is enhanced by further information step-by-step.

In Figure 18 the policy generation process is illustrated. The outputs of the
transformation process are policies which are able to configure all participating SeAAS
instances and corresponding security services.

Figure 18 The policy generation process

As it is shown in Figure 18, our MDS process consists of two main steps: the
refinement transformation and policy generation. Through refinement transformations,
decisions concerning the type or pattern of the security service as well as architectural
design options are considered. The policy generation step, on the other hand,

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 34 / 56

generates security policies that configure the security services. The information about
the supported security patterns and architectures are represented in the provided
meta-models. These meta-models can be used to generate wizards that help
performing the refinement transformation as well as the policy generation.

4.1.1 Input Models
The transformation process from Figure 18 basically needs the following three models
as input:

• Workflow Model (activity diagram),

• Interface Model (class diagram),

• Document Model (class diagram).

The most important information for generating the required policy files are modeled
within an UML activity diagram. This model defines both the business process between
actors and the security requirements.

Our framework supports in its current version the following high level security
requirements:

• integrity,

• confidentiality,

• authentication,

• non-repudiation,

• monitor,

• timestamp.

Within the activity diagram the corresponding stereotypes to these security
requirements can be assigned to the data objects (messages) that are sent from one
actor to another. During the transformation process they can be refined down to
parameter level of a message. The authentication requirement is an exception as it can
only be specified on service level.

All actors and the interactions between them are defined in an activity diagram as
exemplified for HOMES in Figure 19. This example illustrates the task of retrieving
feeds within our HOMES use case scenario. Here a customer behind a HOME
Gateway device wants to retrieve news feeds from a Service provider and therefore the
HOME Gateway sends the corresponding request (getFeedsRequest) to the Service
Provider.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 35 / 56

Figure 19 Workflow Model enhanced with security requirements

The next model that serves as input for the transformation process is the so called
interface model. Basically, this is a class diagram defining services used within the
business workflow. Operations of the services have to be named according to the
activities defined in the workflow model (activity diagram). Figure 20 illustrates the
interface model of our use case scenario.

Figure 20 Interface Model enhanced with security requirements

Here one can see that the authentication requirement has to be assigned to the
interface. Users do have to authenticate for the service itself and not for a specific
operation within that service. In this example it should be the case that the operations
from the Service Provider can only be performed by authenticated users.

With the stereotype interface we label classes describing the operations of the services
used within the business process.

In order to be able to decrease the granularity within the transformation another input
model is necessary. The Document Model describes the body of the messages sent
between the actors. Figure 21 illustrates the structures of the messages from our
simple example.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 36 / 56

Figure 21 Document Model enhanced with security requirements

Using such class diagrams it is possible to attach security requirements to parts of data
objects that flow from one actor to another. For example, only parts of the attributes
may be subject to be signed electronically.

In order to highlight messages the stereotype <<message>> is used.

The security related aspects are defined in an UML profile. This profile (Figure 22)
supports the user with the predefined stereotypes that are introduced throughout this
section.

Figure 22 The SeAAS profile

As we now have shown what the input to the transformation process is, we will present
the outcome of it in the next section. Specifically we will illustrate the structure of the
produced policy files.

4.1.2 Output Policies
When using the SeAAS concept there are basically three policies necessary to
configure the security requirements. The first one configures the SeAAS engine itself.
The second one defines which protocols (e.g. for non-repudiation) should be executed.
The third policy is responsible to advise the security services with technical information
like which element to encrypt. The generated file that represents the third policy has
the shape of a java properties file. All policy files are stored within separate folders for
each actor within the business process.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 37 / 56

It is not possible to extract all information that is necessary for creating those policies
just out of the input models. Technical details, e.g., what algorithms to use for
encryption, are added during the transformation process which will be presented in the
upcoming section.

4.1.3 Transformation
The transformation is responsible for generating the desired policies out of the input
models. This transformation process consists of two refinement steps, where a Security
Engineer is able to provide additional information. So the high level security
requirements in the input models are getting refined to concrete policies. This
refinement consists of two main steps which can be seen in Figure 23.

Figure 23 Steps within the transformation process

The “Architectural Decision” is the first refinement step, in which the decision for a
specific protocol for example has to be made. The “Technical Details” refinement step
provides the information required by the protocol which was chosen during the first
refinement step.

4.1.3.1 Architectural Decision
During this refinement step an architectural decision has to be taken. That means that
a Security Expert or Security Engineer has to choose a specific architectural protocol
or pattern for each security requirement and message. When making this refinement
the user is provided with a list of available patterns where one pattern for example
corresponds to one protocol. As an example, during the refinement of the
Authentication security requirement, the brokered authentication protocol is selected,
and as a result a policy file, shown in Listing 2, is generated. This file asserts which
protocol (line 6) to use. The Application Administrator then has to deploy this policy file
on the SeAAS architecture. Specifically he has to deploy it within the PDP at the
Operators side8.

8 In future versions the deployment can be automatized.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 38 / 56

Listing 2 Generic Authentication Policy

Figure 24 shows the authentication patterns which are available in the prototype. That
means as soon as there is the security requirement Authentication assigned to a
service within the interface model the Security Engineer is able to choose one of the
patterns from Figure 24.

Figure 24 Available patterns for the authentication requirement

In this case the decision has to be done once per service and not per message, as the
security requirement Authentication is an exception and only assigned to a whole
service and not to a message within one interaction.

Once e.g. the brokered authentication pattern is chosen the SeAAS engine uses the
protocol specified in the sequence diagram in Figure 25. After the SeAAS engine of the
service requester's domain processed the policy, a token is requested from the identity
provider. Once the request is successfully validated, the identity provider sends a token
back to the service requester's domain. The SeAAS engine appends this token to the
actual service request and sends it to the service provider. After the service provider
successfully validated the token, the request is processed and the result sent back to
the requester.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 39 / 56

Figure 25 The brokered authentication protocol implemented by the SeAAS engine

After the decision for a specific pattern was made the next step is to provide the
technical details to the transformation process. Using brokered authentication such
information would be the location of the Identity Provider.

4.1.3.2 Technical Details
The second refinement step is about technical details. Here all additional information
that could not have been saved within the input models is provided in order to generate
the policies. Again, taking the brokered authentication example from above the
following information has to be supplied:

• policy of the external identity provider,

• location of the identity provider,

• type of token.

The policy file of the external identity provider is the first information that is necessary
in order to execute the brokered authentication protocol. This policy specifies the
security requirements of the external identity provider. Furthermore, the locations of the
identity provider as well as the type of the token (e.g. SAMLV1.1) have to be given.
This way it is easily possible to replace one identity provider by another.

4.2 Prototype
In this section we will present the prototypical implementation of the concepts
presented in Section 4.1.

The first section of this chapter introduces the graphical user interface. We then
elaborate the meta-models. This is followed by details about the transformation

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 40 / 56

process and presents the process of generating the actual code. The last section finally
discusses the extensibility of the prototype.

4.2.1 Graphical User Interface
We start with the presentation of the graphical user interface of our prototype. The
prototype is implemented as an Eclipse plug-in. The GUI basically consists of two
parts: an input screen for importing the models and one for performing the refinement.

4.2.1.1 Working Models
Our framework leverages an approach based on Model Driven Development.
Therefore it is necessary to have a set of underlying meta-models. For our prototype
we made the decision to use Ecore as our meta-modeling language because our
prototype is an Eclipse plug-in and Ecore is well integrated into Eclipse. Ecore is a
component of the Eclipse Modeling Framework9. As the transformation process
consists of two refinement steps we also have two categories of meta models which we
now discuss further.

The first step, using our prototype, is to import the UML diagrams. During this process
the information that is modeled within these diagrams is transformed into a single
model. This model conforms to our SecureChange-MDS-Meta-Model (Figure 26).

The root eclass of this meta-model is MDSMetaModel. This eclass has a containment
relation to the following three eclasses:

• Type - responsible to save the structure of the messages,

• Partner - saves all involved partners,

• Service - models the services.

An instance of the MDSMetaModel can model an unlimited number of services. The
eclass Service has the attributes name, namespace and prefix. It also has a
containment relation to the eclass ServicePolicy which again has a containment
relation to the eclass Authentication. This states that the security requirement
authentication can be attached to a service. Additionally the Service has a containment
relation to the eclass Operation. This eclass has a single attribute name and
containment relations to the eclasses Request and Response. Both of these eclasses
have a reference to the eclass Type. This means that a service can have an unlimited
number of operations where each operation has a request type and can have a
response type. Both eclasses Request and Response have a containment relation to
the eclass MessagePolicy which again has a containment relation to the eclasses
Monitor, Timestamp, Integrity, Confidentiality and NonRepudiation, respectively. This
states that these security requirements can be applied to the request and response
message of an operation separately. Additionally the eclass MessagePolicy has two
references to the eclass Partner. This way it is possible to store the sending and
receiving partner within the message policy. This information is necessary to generate
the policy files for the right partners.

9 http://www.eclipse.org/modeling/emf/

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 41 / 56

Figure 26 The SecureChange-MDS-Meta-Model

The reason why we transform the UML input models into an instance of this meta-
model is that it becomes easier to retrieve and work with the information stored in this
model.

The Atlas Transformation Language10 is used for this transformation.

4.2.1.1.1 Decision Models
The policy generation process requires additional information. For that purpose the
following meta-models are provided. We call the models used within the transformation
process Decision Models.

10 http://www.eclipse.org/atl/

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 42 / 56

Architectural Decision
The architectural decision is the first refinement step. For each security requirement a
meta-model has been created. Within these meta models the available patterns are
modeled.

Figure 27 illustrates the available patterns for the security requirement monitor. The
ecore class Monitor is abstract and has a single attribute called isRequired. This
attribute states that this eclass is necessary for the transformation. The available
patterns for monitoring are the non-abstract subclasses of the class Monitor.

Figure 27 The meta-model for the monitor security requirement

Technical Details
The second kind of meta-models specifies the information necessary for the realization
of each pattern. Therefore a meta-model for each of the available patterns is provided.

Figure 28 The meta-model for the local monitor pattern

Figure 28 shows the meta-model for the local monitor. All information necessary to
generate the related policy file is modeled within this meta-model. This includes the

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 43 / 56

format of the log file modeled by the abstract eclass Format. The supported patterns
for the formats of the log files are defined using the non-abstract sub eclasses
CommonLogFormat and ExtendedLogFormat. Concerning the level of granularity the
Security Engineer can either choose Inbound, Outbound or InboundOutbound.

4.2.1.2 UML Model Import
This section presents the GUI component that enables importing UML models. The
model import input screen is responsible to import the UML models which were created
by the Domain Engineer. During this step the information stored within these models is
transformed into a single model that conforms to our MDS-Meta-Model. We integrated
this input screen into the standard Eclipse creation wizard which can be reached by
File -> New -> Other… within Eclipse. The “SecureChange – Model Driven Security”
import wizard is then located in an own folder (“SecureChange”) as depicted in Figure
29.

Figure 29 The integration of our import wizard within Eclipse

By choosing this wizard the actual input screen (Figure 30) is shown. There the
Security Engineer has to specify three items:

• UML-Model - this field points to the UML file that stores the input models,

• Container - a project (or folder) has to be selected that will subsequently save
the generated policies,

• File name - the name of the instance of the SecureChange-MDS-Meta-Model.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 44 / 56

Figure 30 The import screen

In order to import a model that was created with a UML Tool the file has to be exported
as XMI file within the used modeling tool (e.g. MagicDraw11). This task has to be
carried out by the Domain Engineer, who initially created these models. XMI is a
standard created by the OMG to support tool independence and interoperability. When
exporting the models from MagicDraw, beside the main file, that stores the information
modeled by the Domain Expert, also files are created that are responsible for saving all
UML profiles used within the model. It is necessary that all files are located within the
same folder when the Security Engineer imports them using our framework.

During this import step the models are transformed into our SecureChange-MDS-Meta-
Model. When finished, a new file is created in the selected container. Additionally,
folders for each partner of the business process are generated. Subsequently the
policy files will be stored separately within these folders.

4.2.1.3 Refinement Steps’ Transformation
After successfully having imported the UML models, the Security Engineer has to
perform the refinements. The goal of these refinement steps is to provide additional
information to the process of transforming the input models into policies.

11 http://www.magicdraw.com/

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 45 / 56

The Security Engineer can choose the security requirement he wants to refine in the
context menu illustrated in Figure 31. This context menu pops up when the Security
Expert clicks with the right mouse button on the SecureChange-MDS-Meta-Model
instance. Under the group “SecureChange” he can then choose a security requirement
to refine.

Figure 31 The context menu in eclipse with our plug-in

As already mentioned the first refinement step is making the decision for the
architectural pattern. Therefore a wizard page is generated where the Security Expert
has to choose one of the available patterns. Figure 32 shows this wizard page for
Monitor requirement. This wizard pages are generated in an automatic way from the
Decision Model that discussed before. The wizards consist of two pages. These pages
slightly vary from one security requirement to another, but have the following core
structure:

On the first wizard window the Security Engineer has to choose a specific pattern or
protocol for the security requirement he is refining. On the second wizard window, he
has to specify the technical details that are required for the pattern chosen on the first
page.

Figure 32 illustrates the first window of the wizard that treats the monitoring
requirement. This security requirement defines what and where a message should be

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 46 / 56

logged. This window corresponds to the first refinement step, where the architectural
pattern is chosen. Here the Security Expert is provided with the corresponding patterns
that are available for this security requirement. In case of monitoring these two patterns
are a local monitor and a remote one. This field is required. That means that a pattern
has to be chosen in order to reach the next page of the wizard.

Figure 32 Wizard page for monitoring

After the Security Engineer made his decision, the next page in this wizard appears.
Figure 33 illustrates the page that corresponds to the Local Monitor pattern. This page
is responsible for the second refinement step. Here the Security Expert has to provide
the technical details for the chosen pattern. Again, the Security Expert is supported
with values to choose for the elements within this pattern. In this figure one can see
that all elements are optional. They can be activated by selecting the corresponding
radio button with the label “Yes”. Additionally we also implemented error detection.
Basically this is necessary to check whether all required fields are filled out or not. In
the latter case an error message is shown to the Security Engineer stating what has to
be done in order to be able to get to the next page. An error does not only occur if a
required element is not filled out but also when the radio button with label Yes is
selected but the field is still empty, as it is the case in Figure 33.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 47 / 56

Figure 33 Wizard page for the local monitor

To summarize, there are two wizard pages for the security requirement Monitor. These
two pages have to be filled out for each interaction where the security requirement is
assigned. In the heading of the wizard pages (Figure 32 and Figure 33) one can see a
string indicating the interaction the Security Engineer is refining with this page. This
string consists of the source partner, target partner and the message.

Once the Security Engineer has entered all required information, the policy files are
generated and saved within the folders of the actors which were created during the
import phase.

At the end it has to be noted that the GUI (e.g. windows of Figure 32 and Figure 33) is
generated based on the SecureChange-MDS-Meta-Model.

4.2.1.4 Policy Generation
The last step our prototype supports is the generation of the policy files as well as the
properties files which will subsequently configure the SeAAS engines. We decided to
use Java Emitter Templates for this task. We defined a template for each policy that
can be generated using our prototype. Essentially there is a template for each of the
meta-models that define the second refinement step (technical details). Listing 3
illustrates such a JET template. For practical reasons the namespaces are omitted.
The shown template is responsible to generate the policy file for the fair non-
repudiation protocol. Actually a java properties file is generated with the help of this
JET template. This file is then used by the SeAAS engine to enforce the security
requirement.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 48 / 56

Listing 3 The JET template for fair non-repudiation

Basically these templates define the static structure of the resulting policy file. Dynamic
information like which element to encrypt is provided with a HashMap. This stores the
values chosen or entered by the Security Expert. The keys of the HashMap again
correspond exactly to the abstract eclasses from the corresponding meta-model.

4.2.2 Extensibility
The building blocks of our prototype are the meta-models. They are responsible to
generate the graphical user interface and forward the information to the JET templates.
In order to extend our framework the main part is to adapt these files to the own needs.
Suppose the Framework Engineer wants to add a third non-repudiation protocol to the
architecture. In a first step he has to add another subclass to the abstract eclass
NonRepudiation in the meta-model. Then he has to create a new meta-model
describing the details of this new protocol following the conventions. Corresponding to
this meta-model and the requirements of his protocol he then has to create a JET
template to actually generate the required policy file. Additionally he also has to change
the JET template that creates the policy file for the generic non-repudiation service.
There he simply has to add the option for his new protocol. As a last step he has to
implement the actual protocol and deploy it on the target architecture.

That way, based on its service oriented conceptualization and its model driven
interface our SeAAS framework provides substantial support for the evolution and
maintenance of the security architecture.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 49 / 56

5 Evaluation and Impact

In Year 3 the methodology of change driven security engineering was evaluated on the
basis of the ATM case study. In terms of tools the MoVE tool was evaluated on the
ATM case study and the HOMES case study, whereas the Security-as-a-Service-
Architecture and its model-driven configuration interface were evaluated on the
HOMES case study. In this section we shortly summarize the collected evaluation
feedback and how it impacted our research and the development of the tools. The
Section concludes with an outline of the impact of the research results of Work
Package 2 from an industrial and scientific point of view.

5.1 Evaluation feedback
We have collected valuable feedback and also constructive criticism from the
practitioners participating in the evaluation which was partly addressed already in our
research and the prototypical tool development.

Change-driven security engineering process: The practitioners deem the
methodology of change-driven security engineering capable to support, capture and
analyze changes and evolutions in a complex domain such as ATM. The question to
what degree complex security problems manifesting on different levels of abstraction
could be handled would need to be tested in a more complex case study. In principle
the approach is able to handle such problems in the required level of detail. The
experts also believe that following our approach we are able to capture organizational
settings and operational procedures of the ATM domain.

A point of criticism was related to the fact, that it is not always clear how all the artifacts
and steps of the change-driven security engineering process are linked to each other.
This highlighted the need for making the impact of changes transparent to the
stakeholders following our methodology. This feedback lead us to design solutions for
the MoVE tool which supports change-driven engineering processes which better
highlight the consequences of each change handling steps to the respective users.
Also clear instructions of the assigned tasks and activities which are expected to be
executed by the respective stakeholder have to be communicated clearly. We have
developed a basic design of a task pane which will be developed as part of future work
and research.

In general, the methodology is deemed applicable in the ATM domain; however it
clearly needs more integration and further evolution to be applicable in real productive
environments for industrial usages.

MoVE tool: The industrial practitioners participating in the September workshop of a
live session demonstrating the application of the MoVE tool in the ATM domain have
also provided valuable feedback for improvements. As already highlighted in the
comments related to change-driven security engineering a request on better
highlighting state changes from on step to the other was made. We have already
addressed this issue by implementing a summary of the state changes after each
commit to the MoVE tool. However, we are aware that using clear visualizations for

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 50 / 56

highlighting the impacts of changes in the respective models would improve the user
experience. This is left open for future work and was not addressed in the
SecureChange project.

An important question was raised by one industrial expert who was interested in how
the state machines can be defined to adapt the tool to a proprietary industrial process.
At the moment the underlying state machines are defined using SCXML. This manual
definition is error-prone and we have not developed a user-friendly front-end for
defining and checking the correctness of state machines. This is a very important point,
which we will address as part of future work on the MoVE tool.

Validation feedback also pointed towards the need to improve and better support
communication between stakeholders. We are aware of this point and in another
research project an important objective will be the development of a task notification
system on top of the MoVE tool. This task list informs stakeholders on their next tasks,
the state of the models they are working on and the state of the overall process.

A feature that is already present in the MoVE tool and that was evaluated as highly
important is the ability to provide evidence in the form of logs. Since every change
committed by a stakeholder to the MoVE tool is analyzed and recorded we can provide
extensive audit logs of who applied what changes during an overall change handling
process.

Security-as-a-Service Architecture (SeAAS):
We have conducted several performance experiments of the SeAAS. The results of
these performance experiments are documented in a technical report (cf. [31]). In the
experiment the impact on the system performance of different Service Oriented
Architecture (SOA) security approaches was studied.

It is most likely impossible to conduct such a study in a real SOA. Therefore we
introduced and explained the development, execution and analysis of an experiment to
compare the performance of the three possible SOA security approaches. For this, we
designed a reference scenario based on SOA and Web services technologies in a first
step. The scenario consisted of a service provider, an Enterprise Service Bus as
communication backbone and the benchmark service consumer. In a second step we
set up three alternative security architectures which were the actual target of
evaluation:

• Endpoint Security (EndSec),

• Enterprise Service Bus Security (ESBSec),

• Security as a Service (SeAAS).

By utilizing various different global performance metrics, which all equivalently reacted
to the studied factor, it was possible to conclude that there exists the following
statistically significant difference in the performance of the system under test: SeAAS <
EndSec < ESBSec. This means the execution time of SeAAS was lower than that of
EndSec and ESBSec, thus having an overall better performance.

This implies implementing basic security functionality with a SeAAS infrastructure
seems to be a feasible way. Based on this experimental setup, the developed tools and
the gained knowledge several additional experiments with increasing complexity (e.g.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 51 / 56

variations in the security mechanisms, etc.) should provide more details in this
research area.

5.2 Impact
The research results and the tools developed in Work Package 2 have been presented
in a number of scientific publications and to various industrial partners. In terms of
scientific impact our goal was the dissemination of our research results on international
software engineering conferences and in related journals.

For Work Package 2 the following publications about the results were published:

• Integrated Process (3 conferences, 1 journal, 1 professional journal),

• SeAAS (2 conferences, 1 journal),

• MoVE (2 conferences, 1 journal).

In terms of scientific impact we are also happy to report that the MoVE tool was
presented to the project partners of the FP7 project PoSecCo. The project consortium
decided to use the MoVE tool as an infrastructure to integrate the artefacts developed
in the PoSecCo project (IT landscape models, business level policies, IT level security
policies) and to support a change-driven process.

We have gathered strong interest from different industrial partners to whom we
presented the MoVE tool. Three industrial partners are currently evaluating the
feasibility of integrating it with their industrial tools.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 52 / 56

6 Conclusion

In this deliverable we presented an overview of the completed implementation of the
prototypical tool support which was the major focus of the third year for Work Package
2. In particular we completed on one hand the development of the MoVE tool
implementation. On the other hand we implemented a model driven interface for the
Security-as-a-Service-Architecture (SeAAS) to support a high-level configuration of the
security services (SeAAS-MDS). Substantial effort was also invested in Year 3 for
validation and evaluation. We applied the MoVE tool on the HOMES and the ATM case
study and we have integrated the Security-as-a-Service-Architecture (SeAAS) in the
HOMES gateway and delivered this prototypical implementation to our industrial
partner for evaluation.

The deliverable started with a general discussion of the position of the various
SecureChange tools with regard to the Integrated Process. Then the HOMES case and
the change handling supported by MoVE were presented in a detailed walk-through
outlining the underlying models and dynamics.

The next section focused on the MoVE tool implementation. We used the MoVE tool to
support a fine-grained change driven security engineering process on the ATM case
study. On the HOMES case study we supported a coarse-grained change driven
process to connect three different tools with specific adaptors. The MoVE tool
applications on the case studies were the basis for the validation and evaluation
efforts. This deliverable contained a short summary of the architectural description of
the MoVE tool before outlining the important aspects of extendibility and configuration.

The model driven security interface for the Security-as-as-Service Architecture
(SeAAS-MDS) was described in detail in the next section. We outlined the input
models and output policies and the transformation process to provide an overview of
the framework. In addition the prototypical implementation was presented, focusing in
particular on the graphical user interface and example models. The section on SeAAS-
MDS concluded with a discussion on the extensibility of the MoVE tool.

The deliverables concludes with a discussion of the evaluation feedback and the
impact of our research results. The research results and the tools developed in Work
Package 2 have been presented in a number of scientific publications and to various
industrial partners. In addition we have gathered positive feedback from the research
community. The project consortium of the FP7 project PoSecCo decided to use the
MoVE tool as an infrastructure to integrate different artefacts developed in the
PoSecCo project and to support a change-driven process. Three industrial partners
also showed strong interest and are currently evaluating the feasibility of integrating
MoVE with their industrial tools.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 53 / 56

7 Glossary

ADS-B: Automatic Dependent Surveillance Broadcast.

Artefact: distinguishes on an abstract level the different models and concepts which
are used by the different Work Packages.

Asset: Something to which a party assigns value and hence for which the party
requires protection.

ATM: Air Traffic Management.

API: Application Programming Interface.

CARiSMA: Enables to perform compliance analyses, risk analyses, and security
analyses of software models.

Change request: A general description of some change in the system.

Change driven software engineering process: The software development process in
a Living Models environment is driven by change events, the state of the model
elements and their interrelationships with other model elements.

Consequence: The impact of an unwanted incident on an asset in terms of harm or
reduced asset value.

CORAS: A method for conducting security risk analysis. The CORAS method provides
a computerised tool designed to support documenting, maintaining and reporting
analysis results through risk modelling.

CSV: Comma-separated values.

DOSGi: Distributed Open Services Gateway initiative.

EMF: Eclipse Modeling Framework.

EVe-TCF: EVe-TCF contains two main parts: off-device tools (executables than run on
standard PC on Windows/Linux/Mac) written in portable C and on-device code to be
integrated in smart card JavaCard virtual machine to verify control flow policies
embedded in JavaCard packages at loading-time.

GUI: Graphical User Interface.

Integrated SecureChange Process: A light-weight change driven software process
allows the application of different methodological approaches developed within the
SecureChange project.

JET: Java Emitter Templates.

Likelihood: The frequency or probability of something to occur.

Living Models: A novel paradigm of model–based development, management and
operation of evolving service oriented systems.

Living Security Engineering Process: A fully change driven security engineering
process.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 54 / 56

MACs: Message Authentication Codes.

Model Element States reflect the milestones in the lifecycle of the modelled artefacts
and are used to reflect relevant changes.

MoVE (Model Model Versioning and Evolution): A tailor-made model repository to
support Living Models and change-driven process.

OCL: Object Constraint Language.

OSGi: Open Service Gateway Initiative.

PDP: Policy Decision Point.

PEP: Policy Enforcement Point.

Reference architecture, specific technical platform or infrastructure realised according
to an architectural paradigm (e.g., Security as a Service).

Risk: A possibility that a particular threat will adversely impact an element of the
system architecture by exploiting a particular vulnerability. It is characterized by the
likelihood of the unwanted incident and its consequence for a specific asset.

SeAAS (Security as a Service) stands for an architectural paradigm. It defines an
architectural blueprint that transposes the model of Software as a Service to the
security domain.

SeAAS-MDS (Security-as-a-Service Model driven security): An interface for the
SeAAS framework which is based on the principles of Model Driven Security.

SecMER: An Eclipse-based heterogeneous modeling environment for managing
evolving requirements models.

SECTET: A framework for model driven security engineering in SOA.

SCXML (State Chart XML): State machine notation for control abstraction.

SOA: Service oriented architecture.

SxC: Security-by-contract.

Threat: A potential cause of an unwanted incident.

Treatment category: A general approach to treating risks; the categories are avoid,
reduce consequence, reduce likelihood, transfer and retain.

Treatment scenario: The implementation, operationalization or execution of
appropriate measures to reduce risk level.

UML: Unified Modeling Language.

Unwanted incident: An event that harms or reduces the value of an asset.

VeriFast: A verifier for single-threaded and multithreaded C and Java programs
annotated with preconditions and postconditions written in separation logic.

Vulnerability: A weakness, flaw or deficiency that opens for, or may be exploited by, a
threat to cause harm to or reduce the value of an asset.

XMI: XML Metadata Interchange.

XML: Extended Markup Language.

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 55 / 56

8 Bibliography

[1] http://tools.ietf.org/html/rfc2753

[2] http://www.atomenabled.org/

[3] http://www.w3.org/TR/soap/

[4] http://www.osgi.org/

[5] http://cxf.apache.org/distributed-osgi.html

[6] http://www.bouncycastle.org/

[7] http://hadoop.apache.org/zookeeper/

[8] http://abdera.apache.org/

[9] http://ws.apache.org/axiom/

[10] http://xml.apache.org/xalan-j/

[11] http://ws.apache.org/commons/neethi/

[12] http://santuario.apache.org/

[13] http://www.osgi.org/download/r4-v4.2-cmpn-draft-20090310.pdf

[14] http://www.w3.org/Submission/WS-Policy/

[15] http://www.magicdraw.com/

[16] http://www.eclipse.org/

[17] http://help.eclipse.org/indigo/index.jsp

[18] http://move.q-e.at/

[19] http://subversion.apache.org/

[20] Bill Burke. RESTful Java with JAX-RS. O'Reilly, 2010.

[21] D. Steinberg, F. Budinsky, M. Paternostro, E. EMF: Eclipse Modeling Framework, 2nd
Edition, Published Dec 16, Addison-Wesley Professional, 2008.

[22] OMG, OMG Unfied Modeling Language (OMG UML) Superstructure V2.4.1,
http://www.omg.org/spec/UML/2.4.1/

[23] OCL, OMG, Object Constraint Language(OCL) Specification V2.2,
http://www.omg.org/spec/OCL/2.2

[24] R. S. Hall, K. Pauls, S. McCulloch and D. Savage. OSGi in Action Creating Modular
Applications in Java. Manning Publications, 2010.

[25] Peter Kriens and BJ Hargrave. Listeners Considered Harmful: The ''Whiteboard'' Pattern.
OSGi Alliance, 2004.

[26] Jianying Zhou and D. Gollman. A Fair Non-repudiation Protocol. IEEE Symposium on
Security and Privacy, pages 55-61, 1996

[27] Blake Dournaee. XML Security. McGraw-Hill, 2002.

[28] Christian Connert, Benchmarking SOA Security Approaches, Master thesis 2010.

http://tools.ietf.org/html/rfc2753
http://www.atomenabled.org/
http://www.w3.org/TR/soap/
http://www.osgi.org/
http://cxf.apache.org/distributed-osgi.html
http://www.bouncycastle.org/
http://hadoop.apache.org/zookeeper/
http://abdera.apache.org/
http://ws.apache.org/axiom/
http://xml.apache.org/xalan-j/
http://ws.apache.org/commons/neethi/
http://santuario.apache.org/
http://www.osgi.org/download/r4-v4.2-cmpn-draft-20090310.pdf
http://www.w3.org/Submission/WS-Policy/
http://www.magicdraw.com/
http://www.eclipse.org/
http://help.eclipse.org/indigo/index.jsp
http://move.q-e.at/
http://subversion.apache.org/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/OCL/2.2

D2.3 An Integrated Security Process for Lifelong
Adaptable Systems | version 1.0 | page 56 / 56

[29] Hafner, M. and Breu, R. Security Engineering for Service-Oriented Architectures. Springer
Verlag GmbH, Berlin/Heidelberg. 2008.

[30] R. Breu, M. Memon, F. Innerhofer-Oberperfler, M. Weitlaner, M. Breu, M. Hafner, R.
Scandariato, K. Yskout, K. Buyens, B. Fontan, F. Paci, E. Chiarani. An architectural
blueprint and a software development process for security-critical lifelong systems.
Deliverable D.2.1, SecureChange, 2010.

[31] F. Innerhofer-Oberperfler, S. Löw, R. Breu, M. Breu, M. Hafner, B. Agreiter, M. Felderer, P.
Kalb, R. Scandariato, B. Solhaug. A configuration management process for lifelong
adaptable systems. Deliverable D.2.2, SecureChange, 2011.

[32] C. Connert, S. Forster, M. Hafner. SeAAS – Introduction and Empirical Performance
Evaluation, Technical Report QE-2011-24, 2011.

	Document information
	Document change record
	Executive summary
	Index
	1 Introduction
	2 Tool Support for the Integrated Security Process for Lifelong Adaptable Systems
	2.1 Tool roadmap
	2.2 The process of defining the Integrated Process
	2.3 A specific process and tool implementation: The HOMES case study
	2.3.1 Overview of system and risk models before the change
	2.3.2 Step 1: Customer orders a new risk analysis
	2.3.3 Step 2: Update of the risk model
	2.3.4 Step 3: System analysis of the change
	2.3.5 Step 4: Change of security configuration and deployment
	2.3.6 Step 5: Notifying the system analyst of the changed security configuration

	3 MoVE Tool
	3.1 Objectives and Features
	3.2 Architecture
	3.3 Extendibility and configuration
	3.3.1 Client-side extension
	3.3.2 Server-side extension
	3.3.2.1 Add new state machine
	3.3.2.2 Add a plugin to check a metric
	3.3.2.3 Configuration

	3.4 Comparison of MoVE with other Model Repositories

	4 Model Driven Security Interface
	4.1 Framework Overview
	4.1.1 Input Models
	4.1.2 Output Policies
	4.1.3 Transformation
	4.1.3.1 Architectural Decision
	4.1.3.2 Technical Details

	4.2 Prototype
	4.2.1 Graphical User Interface
	4.2.1.1 Working Models
	4.2.1.1.1 Decision Models

	4.2.1.2 UML Model Import
	4.2.1.3 Refinement Steps’ Transformation
	4.2.1.4 Policy Generation

	4.2.2 Extensibility

	5 Evaluation and Impact
	5.1 Evaluation feedback
	5.2 Impact

	6 Conclusion
	7 Glossary
	8 Bibliography

